US009081634B1

a2 United States Patent 10) Patent No.: US 9,081,634 B1
Simkins et al. 45) Date of Patent: Jul. 14, 2015
’
(54) DIGITAL SIGNAL PROCESSING BLOCK 7.480,690 B2 1/2009 Simkins et al.
7,567,997 B2 7/2009 Simkins et al.
. T 7,840,627 B2 11/2010 Simkins et al.
(71) Applicant: Xilinx, Inc., San Jose, CA (US) 7/840.630 B2 11/2010 Wong et al.
Lo . 7,844,653 B2 11/2010 Simkins et al.
(72) Inventors: James M. Simkins, Park City, UT (US); 7,849,119 B2 12/2010 Vadi et al.
Wayne E. Wennekamp, San Jose, CA ;,ggg,ggi g% ng}g (83111;]111(,% et al.al
. s s 1 ns et al.
(US); John M. Thenfiean, Pleasanton, 7853636 B2 122010 New et al.
CA (US); Adam Elkins, San Jose, CA 7,860,015 B2 12/2010 Vadietal.
(US); Richard L. Walke, Edinburgh 7,865,542 B2 1/2011 New et al.
(GB) 7,870,182 B2 1/2011 Thendean et al.
7,882,165 B2 2/2011 Simkins et al.
: R 8,463,832 B1* 6/2013 Hazanchuk etal. 708/230
(73) Assignee: XILINX, INC., San Jose, CA (US) 2005/0144210 Al 6/2005 Simkins et al.
" R 2006/0190516 Al* 82006 Simkinsetal. 708/490
(*) Notice: Subject to any disclaimer, the term of this 2010/0191786 Al* 7/2010 Simkins et al. 708/209
patent is extended or adjusted under 35 . .
U.S.C. 154(b) by 347 days. cited by examiner
(21) Appl. No.: 13/672,948 Primary Examiner — Chat Do
Assistant Examiner — Calvin M Brien
(22) Filed: Nov. 9, 2012 (74) Attorney, Agent, or Firm — W. Eric Webostad
(51) Int.CL (57 ABSTRACT
GO6F 7/57 (2006.01) An apparatus is disclosed. This apparatus includes a digital
52) US.CL signal processing (“DSP”) block having a preadder-register
gnal p 2 gap 2
CPC it GO6F 7/57 (2013.01) block coupled to receive first through fourth input operands.
(58) Field of Classification Search A multiplier is coupled to the preadder-register block to
CPC oo GO6F 17/10 receive a multiplicand operand and a multiplier operand. A
USPC oo 708/620 first register block is coupled to the multiplier to receive sets
See application file for complete search history. of partial products from the multiplier. A second register
block coupled to receive the third operand input. An arith-
(56) References Cited metic logic unit (“ALU”) block is coupled to the pre-adder-

U.S. PATENT DOCUMENTS

2/2004
12/2008
12/2008
12/2008

Warrencccoeeovvvenenns 370/389
Simkins et al.
Simkins et al.
Simkins et al.

6,690,667 Bl *
7,467,175 B2
7,467,177 B2
7,472,155 B2

BCOUT
ACOUT,

w

B

£y

18

413—‘ ﬁﬁ 442

212

B ¢ 18 Dual B
——— Register

register block, the first register block and the second register
block. The ALU block includes four input multiplexers and an
ALU, where the ALU is coupled to receive outputs from each
of the four input multiplexers.

9 Claims, 10 Drawing Sheets

ALU Black

Dual A,D
201 Register With
Preadder

o]
b

441 - 202

INMODE

- 341

BCIN
ACIN

200

5
260 Q
____________ o
o
269
P
XOR
271
CARRY
out
G
2712 273
PATTERN
_DETECT
[
> Z — = 4 48/‘/2
xo|ls = =
g % 35 281 =

US 9,081,634 B1

Sheet 1 of 10

Jul. 14, 2015

U.S. Patent

. a4 |
1 Ol ! !
([| | PSSy p— -
([:“ [OTS1OW
S L L T o O o I I
s A A <L
._Vo_‘" ki TT " mo|_.w_>_<w_m
_ Z01s910
W T T_./ 1T 111
_ INT P roL S8l
| | L
2018910
5 d e/ ub
01sdsa
1 1 L e
COBNYYS
L1 11 L1 11 L1 11 L1 11 I=AT L1 11 L1 11
I I T L I
m O STOT O GO SMO01D / JIANOD 2010/
N 0 o I
A OV SO T T 11
_ EOBINY
wl_%—uT_ 0Ll 20¥d =07 591D
LNI | OBV
R ¥ .y
AUACLY
L
01 s90I
901 o €0} -
2015912
e COBNYAE
1T R e g I I
— 2018910
| M.F_m_____ I S S I O
1 —_—
7 [0} SLOW
20l =2 “
o T
\ P OIN [/| o\
00l | OFNOILNGINLSIA %0010 / DI4NO

US 9,081,634 B1

Sheet 2 of 10

Jul. 14, 2015

U.S. Patent

¢ 9Old
) =0
g 182 2582
]
o 9-eee |see - vez ||
5 B e Bk
R c =S 13 =
88C 3 8c-Ig = £ 2
Bt T 6| ez
[

10313
NY3LLvd

Aj\JM_I

€2 7
d

- (

1no
AHYO

1n0dd

oig NV

LN02SYD
AHYYD

002

N

pve]
o [©
= |=
= LPE
5
A4 =) ~— Ly
15
Vv
£0g~
\L/ \m L\ O
8GZ ~ v {
’ G0¢
¥0¢ ~
Joppesid Y ;d
uim Jeisiboy [S7£ 10¢
a ‘v leng
€ Y /V
Le
)
| + \mm L
H “181
sopsibey L — |
g leng Jﬂr\j
¢le
@iy
>
ere \/(&%
S Yo
\ A=
<

US 9,081,634 B1

Sheet 3 of 10

Jul. 14, 2015

U.S. Patent

€ Old
__l ||||||||||||||||||||||| a
/ €-20¢ z-20Z _
e
¢6e - | _m_m_,\n_o_\,_z_ [ZJ300NNI Qm/ _
13s1INNY I \ 29¢ X4) (wo/m 3 |
60E- v_\m/// “ _.[W\ q _
K < | |
av _
28E - 7z 1 _
eleq Qv |
L _ ke
. 020Z
| J_ [0]3AONNI
il _
¢6e -/ | _ Zle
_ _ —
_ _ \
| zze Y _
e _) | f ‘
1-202
| AN |
Sk S 300WNI | | ot Y
|
- _ 76 |
| |
| . |
- N " 0¢ f _
eve | - |
1NV | voe |
l6e -/ A AN
¥0Z

US 9,081,634 B1

Sheet 4 of 10

Jul. 14, 2015

U.S. Patent

¥ ©Old
-202
[¥]3AONNI
R
_ _ 2%
_ LY _ z_MVm
_
ZLy 9 K _
_ . . \ " _ _
| \ 24 Bl |
5>— f/ | N
|-i|||_f h or 1 zue
XN X [40)%
f |+acd [1]13a0nINI oy _ d
A | /. _
_ 81 _
| \ _
- _ . |
) _ 81 / _
_
19727 ~ |
_
1noo%29 L _ Wow ||||||||||||||||||||||||||||||| _
6% J
4._/ Vo7

US 9,081,634 B1

Sheet 5 of 10

Jul. 14, 2015

U.S. Patent

00s

G Old
Lg/eq a andL | L | L L/0
Lg/zg a anydL 0 L L L L/0
Lg/zg Lv—a anydL X 0 X L L/0
Lg/eq A€ andL 0 0 | X L/0
Lg/zg 0197 anydL b L 0 L L/0
Ld/eg 0197 andL 0 L 0 L L/0
Lg/z9 A anydL L 0 0 L L/0
Relras! Zv- anydlL 0 0 0 b 110
\g/eg 1a andL | | | 0 L/0
Lg/z9 1a anydL 0 L b 0 L/0
Lg/eg Lv+Q andL | 0 | 0 L/0
Lg/z9 Zv+d andL 0 0 L 0 L/0
Relrds! 0197 andlL b L 0 0 110
Lg/zg 0197 andL 0 | 0 0 110
Lg/zg LY anydL X 0 0 0 L/0
\g/eg A andL 0 0 0 0 L/0
Lg/z9 0197 3STv4 L L 0 0 L/0
lg/eq 0197 3S7v4 0 | 0 0 110
Lg/z9 LY 35TV L 0 0 0 L/0
Lg/zg A ERRVE! 0 0 0 0 L/0
uod g HNW| Mod vV INW| TISLINIY | [0]3A0ONNI | [L13a0nNI | [Z]I3a0lNI | [EI3a0NI | [¥]13A0OWNI
V4 AT N g6 020z 120z @20z €202 720

US 9,081,634 B1

Sheet 6 of 10

Jul. 14, 2015

U.S. Patent

€L

. Ol

Y

- CbL 5
A §

PFN J OPN)

ZX

Z+X

Z+X

ZX

Jou

JOX

10

Joux

¥04

pueu

JOoux

pue

OO~ |~ |~ |~ |||~ |+

40X

g
&)

10e49ns

— oo~ |~ |o|lo|~|~|o|~|o|—K

o

ppe

QOO ||~ O~ |O |~ |~ v~]|~ |+

QIO |~ |~ |~ |~ |~~~ |~ |~ |~]|~]|

o

o|—|o|lolo|@P|C|If|IP[~ 7|7 | Kk

o

uonoung

o,

&

(1]

SPONNTV

cos -/

et

004

0L -/

9 'Ol

c9¢

Z19
[¢lepony nv

B

e 0€9

oo N]/
EENTIE
XNIN-HOX

L19

[LlepoN NIV

ieo A 4 (| - 029
) L.

€29 7 g1q S 019
[elopoy Ny O1PPON NV

U.S. Patent Jul. 14, 2015 Sheet 7 of 10 US 9,081,634 B1

640
XOR12 S
S 811 801
S(@47) " ——
. — 801-8 - XOR24
. _—)D——¥ 812 802
. ‘ —_— PR
S@2) —— (g11.8 802-4
S(41) - ;
(.) - 812-4 XOR48
:)) s 813 803
801-7-/ —

UL

;

S(36)" - L 811-7 DD——#

S(35) -) L 803-2
801-6 - {
.) > -813-2
. - 8123
S(30)" - L8116 :) '
S(29) . 802-3-/

814
Do —
S(24)" 8015 D»
S(23) - 811-5 f/
. 801-4 - XOR96/
)) > > 804

)

~ 8114 :) 802-2,
@ —

S(17) -)

L g12-2
. > aqa.
-) >—801_3 Q S .
-) , - 803-1
s L 811-3)
)j >)
S(11)" -

801-2 -

S(18)" -

)]

|

L]

- | - 812-1
S6) " - {g11-2 :
=
55) - 8021
= sl
. —4— 8011
T fam FIG. 8

U.S. Patent Jul. 14, 2015 Sheet 8 of 10
900 263
P, ,—_|
/7916 g 90077 /280
0 TN
| Mcxoree®__f S 263-8
|+___9£’1'_1 A I >
| [
| [
! L Q|
: / [D
| 801-7-) | | 263-7
i 900-6 b >
| o . o
| 8032 ;N b 5
| 801-6 — D
| MCXOR48 - o 2636
9012 T
| 900-5 NI 1
|]
| gos-1° | il Ip @
| MCXOR48 _ Lo 263-5
| N~
o012 S LA it
| 900-4" \]
| go24 | | |p ©
| MCXOR24 T 3.4
| 901-3 T\go1-4 ° | o >
F———————- - - Loy
| 900-3" L
| 802-3\/”—\: | 5 Q
| }
| MCXOR24 801-3 > | o 263-3
9013 L >
————— - - — b
| 900-2' \\| ! 5
—l | 1
i 802-2.J | : D
| MCXOR24] L 263-2
: 901-3 . 801-2 | II >
———— - — || |
| 900-1"- |
I 802-1\/—\ b Qj
|) D
— | -
l__?gl'f’__\:_/l CLK
920

269

US 9,081,634 B1

640

FIG. 9

US 9,081,634 B1

Sheet 9 of 10

Jul. 14, 2015

U.S. Patent

g.v-/+Q) lgze IVeY-/+Q 3nyL 0 0 HO 0 | 0 L0
g8 1828 | 1HEE] gt » } b] s
{Zostthin 22147 3254023 it i i i] iy
2ol 2e7h" o 3274= 00" e 4)] % Vit Vi
Ll 1 OVEERRY | AEIE g0 4 bty i
g 3:74-90% VLY L 7] b Lt
¥l 4 Ly xE ; %
vAga § LE28a Ly i) ¥ 7
Yyl 1oy g 3 FA I £ i %7 ¥
Zavii YTt Y ELRe : 3 Ll 9 % 1 %
% FVIY- VYTV HRL i 7 % Lt ¥
2l g 4 E10 4 ¥ f & 4
el b Y A] 5y
wi3Z,3 1874 wieg Ciae i b 0 % Wi
g 3:147] A W o] Vi
uoHsUY Wed g uodw | PESENAY 138 gels
wepppvad | sudanyy | sendiny | Le0d407380 | Lvwie | wmiaovaue | Dolzcommt | llzooww | iigcow | Iiacom | Wl soonn

1001

000}

7

/

-

by

s

1423

‘

S

G6¢

v
S
7

— -

/ -

/ /
sey -/ 118

0-202

I

7

1-202

v

2-202 €202

P

v-202

—

US 9,081,634 B1

Sheet 10 of 10

Jul. 14, 2015

U.S. Patent

L1 "OId

€LLL
[0:evliopey

Mmoo -7

€-00Z-/

ZLLL
[0:2¥]Ie®y no.

LOL L
[0:g2]iAreuibew] v
4)
d A\
> S0l
zv LV < lo:gzlieay v
| Ly vOLL

< [o-91]Areubew g

Y

N

z-00zZ-/

LLLL
[0:2¥]AseuBew

i
/
\

7 €0l
[0:gtliojoeq Ul O

0Ll
[0:01]1eay g

oL | |

no %

1-002/

7

LeLL

LOLL
[0:GZ]AteuIBRW] v

< /

2 A

0ELL o/ N

US 9,081,634 B1

1
DIGITAL SIGNAL PROCESSING BLOCK

TECHNICAL FIELD

An embodiment relates to integrated circuit devices
(“ICs”). More particularly, an embodiment relates to a digital
signal processing block for an IC.

BACKGROUND

Performance of a design instantiated using programmable
resources of a Field Programmable Gate Array (“FPGA fab-
ric”) is limited by the speed of the FPGA fabric. However,
dedicated or embedded circuit resources (“hard macros”™),
such as digital signal processing blocks (“DSPs™) in an
FPGA, are capable of performing operations faster than
equivalent circuits implemented in FPGA fabric. Accord-
ingly, it would be desirable and useful to provide means for
expanding the usefulness of DSPs.

SUMMARY

One or more apparatuses generally relate to a digital signal
processing block.

An apparatus relates generally to an integrated circuit. In
this apparatus, a digital signal processing (“DSP”) block has
an input interface for receiving a first operand input, a second
operand input, a third operand input, and a fourth operand
input. The DSP block comprises: a preadder-register block
coupled to receive the first operand input, the second operand
input, and the fourth operand input; a multiplier coupled to
the preadder-register block to receive a multiplicand operand
and a multiplier operand therefrom; and a first register block
coupled to the multiplier to receive a first set of partial prod-
ucts and a second set of partial products from the multiplier.
The DSP block further comprises: a second register block
coupled to receive the third operand input; and an arithmetic
logic unit (“ALU”) block coupled to the pre-adder-register
block, the first register block and the second register block.
The ALU block comprises: a first multiplexer coupled to
receive the third operand input from the second register block
and a feedback product input from a product output of the
ALU block; a second multiplexer coupled to receive the first
set of partial products and the product input fed back; a third
multiplexer coupled to receive the second set of partial prod-
ucts and the third operand input from the second register
block; a fourth multiplexer coupled to receive the product
input fed back and the third operand input from the second
register block; and an ALU coupled to receive outputs from
each of the first multiplexer, the second multiplexer, the third
multiplexer, and the fourth multiplexer.

Another apparatus relates generally to another integrated
circuit. In this apparatus, a digital signal processing (“DSP”)
block has an input interface for receiving a first input operand,
a second input operand, a third input operand, a first cascade
operand, and a second cascade operand. The DSP block com-
prises: a preadder-register block, a register block coupled to
the preadder-register block, and a multiplier coupled to the
preadder-register block and the register block to receive a first
multiplication operand and a second multiplication operand
respectively therefrom. The preadder-register block is
coupled to receive the first input operand, the second input
operand, and the first cascade operand. The preadder-register
block includes an adder/subtractor coupled to provide a result
operand as output therefrom. The register block is coupled to
receive the third input operand and the second cascade input.
The preadder-register block and the register block in combi-

10

20

25

30

35

40

45

55

60

65

2

nation are configurable to provide the first multiplication
operand and the second multiplication operand to the multi-
plier to obtain partial products for obtaining a square of the
result operand.

Yet another apparatus relates generally to yet another inte-
grated circuit. In this apparatus, a plurality of digital signal
processing (“DSP”) slices are coupled to one another for
performing multiplication of a first complex variable and a
second complex variable. Each of the DSP slices has an input
interface for receiving a first operand input, a second operand
input, a third operand input, and a fourth operand input. Each
of the DSP slices comprises: a preadder-register block
coupled to receive the first operand input, the second operand
input, and the fourth operand input; a multiplier coupled to
the preadder-register block to receive a multiplicand operand
and a multiplier operand therefrom; a first register block
coupled to the multiplier to receive a first set of partial prod-
ucts and a second set of partial products from the multiplier;
a second register block coupled to receive the third operand
input; and an arithmetic logic unit (“ALU”) block coupled to
the pre-adder-register block, the first register block and the
second register block. The ALU block comprises: a first mul-
tiplexer coupled to receive the third operand input from the
second register block and a feedback product input from a
product output of the ALU block; a second multiplexer
coupled to receive the first set of partial products and the
product input fed back; a third multiplexer coupled to receive
the second set of partial products and the third operand input
from the second register block; a fourth multiplexer coupled
to receive the product input fed back and the third operand
input from the second register block; and an ALU coupled to
receive outputs from each of the first multiplexer, the second
multiplexer, the third multiplexer, and the fourth multiplexer.

BRIEF DESCRIPTION OF THE DRAWINGS

Accompanying drawings show exemplary embodiments.
However, the accompanying drawings should not be taken to
limit the embodiments shown, but are for explanation and
understanding only.

FIG. 1 is a simplified block diagram depicting an exem-
plary embodiment of a columnar Field Programmable Gate
Array (“FPGA”) architecture.

FIG. 2 is a block/circuit diagram depicting an exemplary
DSP slice.

FIG. 3 is a circuit diagram depicting an exemplary pread-
der of the DSP slice of FIG. 2.

FIG. 4 is a circuit diagram depicting an exemplary dual B
register of the DSP slice of FIG. 2.

FIG. 5 is a table diagram depicting an exemplary inmode
function table.

FIG. 6 is a block/circuit diagram depicting an exemplary
arithmetic logic unit (“ALU”).

FIG. 7 is a table diagram depicting an exemplary opera-
tions table for the ALU of FIG. 6.

FIG. 8 is a circuit diagram depicting an exemplary portion
of an XOR-MUX tree of the ALU of FIG. 6.

FIG. 9 is a block/circuit diagram depicting another exem-
plary portion of XOR-MUX of the ALU of FIG. 6 to provide
XOR/SIMD output.

FIG. 10 is a table diagram depicting an exemplary arith-
metic operations table for the DSP slice of FIG. 2.

FIG. 11 is a block diagram depicting an exemplary set of
DSP slices configured to provide a multiply-accumulate
function.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a more thorough description of the spe-

US 9,081,634 B1

3

cific embodiments. It should be apparent, however, to one
skilled in the art, that one or more embodiments may be
practiced without all the specific details given below. In other
instances, well known features have not been described in
detail so as not to obscure the one or more embodiments. For
ease of illustration, the same number labels are used in dif-
ferent diagrams to refer to the same items; however, in alter-
native embodiments the items may be different.

Before describing exemplary embodiments illustratively
depicted in the several figures, a general introduction is pro-
vided to further understanding.

As demands for speed increase, adding functionality in the
form of configurable (or programmable) hard macros in SoC,
FPGA, orother ICs likewise increases. One area for increased
speed of operation is digital signal processing. Described
below is a digital signal processing slice that may be repli-
cated for having multiple instances thereof in an IC. Such
digital signal processing slices for example may be grouped
in a column, where output of one such slice may be input to an
adjacent slice. The following slices include: a preadder that,
in combination with a multiplier, is configurable to provide a
square of an input and that provides additional versatility in
sourcing variables, an AL U that includes an XOR-MUX tree
which allows for SIMD arithmetic and logic operations,
including without limitation SIMD XOR operations, and an
ALU block with a fourth input multiplexer to allow for a
round constant or a feedback input to provide an accumulator
function.

With the above general understanding borne in mind, vari-
ous embodiments for digital signal processing data path ele-
ments or slices are generally described below.

Because one or more of the above-described embodiments
are exemplified using a particular type of IC, a detailed
description of such an IC is provided below. However, it
should be understood that other types of ICs may benefit from
one or more of the embodiments described herein.

Programmable logic devices (“PLDs”) are a well-known
type of integrated circuit that can be programmed to perform
specified logic functions. One type of PLD, the field program-
mable gate array (“FPGA”), typically includes an array of
programmable tiles. These programmable tiles can include,
for example, input/output blocks (“IOBs™), configurable
logic blocks (“CLBs”), dedicated random access memory
blocks (“BRAMs”), multipliers, digital signal processing
data path elements or blocks (“DSPs™), processors, clock
managers, delay lock loops (“DLLs”), and so forth. As used
herein, “include” and “including” mean including without
limitation.

Each programmable tile typically includes both program-
mable interconnect and programmable logic. The program-
mable interconnect typically includes a large number of inter-
connect lines of wvarying lengths interconnected by
programmable interconnect points (“PIPs”). The program-
mable logic implements the logic of a user design using
programmable elements that can include, for example, func-
tion generators, registers, arithmetic logic, and so forth.

The programmable interconnect and programmable logic
are typically programmed by loading a stream of configura-
tion data into internal configuration memory cells that define
how the programmable elements are configured. The con-
figuration data can be read from memory (e.g., from an exter-
nal PROM) or written into the FPGA by an external device.
The collective states of the individual memory cells then
determine the function of the FPGA.

Another type of PLD is the Complex Programmable Logic
Device, or CPLD. A CPLD includes two or more “function
blocks” connected together and to input/output (“I/O”)

5

10

20

25

30

35

40

45

50

55

60

65

4

resources by an interconnect switch matrix. Each function
block of the CPLD includes a two-level AND/OR structure
similar to those used in Programmable Logic Arrays
(“PLAs”) and Programmable Array Logic (“PAL”) devices.
In CPLDs, configuration data is typically stored on-chip in
non-volatile memory. In some CPLDs, configuration data is
stored on-chip in non-volatile memory, then downloaded to
volatile memory as part of an initial configuration (program-
ming) sequence.

For all of these programmable logic devices (“PLDs”), the
functionality of the device is controlled by data bits provided
to the device for that purpose. The data bits can be stored in
volatile memory (e.g., static memory cells, as in FPGAs and
some CPLDs), in non-volatile memory (e.g., FLASH
memory, as in some CPLDs), or in any other type of memory
cell.

Other PLDs are programmed by applying a processing
layer, such as a metal layer, that programmably interconnects
the various elements on the device. These PLDs are known as
mask programmable devices. PLDs can also be implemented
in other ways, e.g., using fuse or antifuse technology. The
terms “PLD” and “programmable logic device” include but
are not limited to these exemplary devices, as well as encom-
passing devices that are only partially programmable. For
example, one type of PLD includes a combination of hard-
coded transistor logic and a programmable switch fabric that
programmably interconnects the hard-coded transistor logic.

As noted above, advanced FPGAs can include several dif-
ferent types of programmable logic blocks in the array. For
example, FIG. 1 illustrates an FPGA architecture 100 that
includes a large number of different programmable tiles
including multi-gigabit transceivers (“MGTs”) 101, config-
urable logic blocks (“CLBs”) 102, random access memory
blocks (“BRAMs”) 103, input/output blocks (“1OBs”) 104,
configuration and clocking logic (“CONFIG/CLOCKS”)
105, digital signal processing blocks (“DSPs”) 106, special-
ized input/output blocks (“1/0’) 107 (e.g., configuration ports
and clock ports), and other programmable logic 108 such as
digital clock managers, analog-to-digital converters, system
monitoring logic, and so forth. Some FPGAs also include
dedicated processor blocks (“PROC”) 110.

In some FPGAs, each programmable tile includes a pro-
grammable interconnect element (“INT”) 111 having stan-
dardized connections to and from a corresponding intercon-
nect element in each adjacent tile. Therefore, the
programmable interconnect elements taken together imple-
ment the programmable interconnect structure for the illus-
trated FPGA. The programmable interconnect element 111
also includes the connections to and from the programmable
logic element within the same tile, as shown by the examples
included at the top of FIG. 1.

For example, a CLLB 102 can include a configurable logic
element (“CLE”) 112 that can be programmed to implement
user logic plus a single programmable interconnect element
(“INT”) 111. A BRAM 103 can include a BRAM logic ele-
ment (“BRL”) 113 in addition to one or more programmable
interconnect elements. Typically, the number of interconnect
elements included in a tile depends on the height of the tile. In
the pictured embodiment, a BRAM tile has the same height as
five CLBs, but other numbers (e.g., four) can also be used. A
DSP tile 106 can include a DSP logic element (“DSPL”) 114
in addition to an appropriate number of programmable inter-
connect elements. An 10B 104 can include, for example, two
instances of an input/output logic element (“IOL”) 115 in
addition to one instance of the programmable interconnect
element 111. As will be clear to those of skill in the art, the
actual I/O pads connected, for example, to the /O logic

US 9,081,634 B1

5

element 115 typically are not confined to the area of the
input/output logic element 115.

In the pictured embodiment, a horizontal area near the
center of the die (shown in FIG. 1) is used for configuration,
clock, and other control logic. Vertical columns 109 extend-
ing from this horizontal area or column are used to distribute
the clocks and configuration signals across the breadth of the
FPGA.

Some FPGAs utilizing the architecture illustrated in FIG. 1
include additional logic blocks that disrupt the regular colum-
nar structure making up a large part of the FPGA. The addi-
tional logic blocks can be programmable blocks and/or dedi-
cated logic. For example, processor block 110 spans several
columns of CLBs and BRAMs.

Note that FIG. 1 is intended to illustrate only an exemplary
FPGA architecture. For example, the numbers of logic blocks
in a row, the relative width of the rows, the number and order
of rows, the types of logic blocks included in the rows, the
relative sizes of the logic blocks, and the interconnect/logic
implementations included at the top of FIG. 1 are purely
exemplary. For example, in an actual FPGA more than one
adjacent row of CLBs is typically included wherever the
CLBs appear, to facilitate the efficient implementation of user
logic, but the number of adjacent CLB rows varies with the
overall size of the FPGA.

FIG. 2 is a block/circuit diagram depicting an exemplary
DSP slice 200. DSP slice 200 may, though need not, be an
exemplary DSP 106 of FPGA 100 of FIG. 1. Along those
lines, DSP slice 200 need not be in an FPGA, but may be used
in any of a variety of ICs having configurable hard macro
blocks.

With respect to an input interface of DSP slice 200, D input
signal (“input”) 201, A input 211, A cascade input (“ACIN” or
“AC input”) 341, and input mode signals (“inmodes”, which
refers to INMODE in FIG. 2) 202, are provided to a dual A, D
register with preadder-register block 204, where inmodes 202
are provided to inmode register 203 for preadder-register
block 204, as well as for a dual B register block 242, as
described below in additional detail. In this example, there are
five inmodes 202; however, in other embodiments fewer or
more than five inmodes 202 may be used. B input 212 and B
cascade input (“BCIN” or “BC input”) 441 are provided to
dual B register (“register block™) 242. C input 205 is provided
to C register 206, and output from C register 206 in this
example may be a 48 bit wide output, namely operand “CQ.”
In this example, A input 211, B input 212, C input 205, and D
input 201 respectively are 30, 18, 48, 27 bits wide. BCIN 441
and ACIN 341 in this example respectively are 18 and 30 bits
wide. In other embodiments, other bit widths for these signals
may beused. Furthermore, the terms “input” and “output” are
used interchangeably to indicate either or both of a signal and
a port or bus, including without limitation their plural forms.

With respect to a portion of an output interface of DSP slice
200, register block 242 and preadder-register block 204
respectively provide a B cascade output (“BCOUT”) 443 and
an A cascade output (“ACOUT”) 343, which in this example
are 18 and 30 bits wide, respectively. However, in other
embodiments, other bit widths may be used, as previously
indicated herein.

Other outputs of register block 242 and preadder-register
block 204 may be combined to provide an [A:B] output 250,
which is a parallel bus concatenation of an A/ACIN input
operand and a B/BCIN input operand, which in this example
is a 30 bit wide bus output 342 from preadder-register block
204 combined with an 18 bit wide bus output 442 from
register block 242 to form a 48 bit wide output 250. A mul-
tiplication operand may be output from register block 242 for

10

15

20

25

30

35

40

45

50

55

60

65

6

input to a multiplier 251 via an output 444, and another
multiplication operand may be output from preadder-register
block 204 for input to multiplier 251 via an output 344. In this
example, output 444 is 18 bits wide, and output 344 is 27 bits
wide. Furthermore, in this example, a multiplication operand
provided on output 444 is a multiplier operand, and a multi-
plication operand provided on output 344 is a multiplicand
operand. However, in other embodiments, a multiplier oper-
and and a multiplicand operand may respectively be on output
344 and output 444. Multiplier 251 may have a mode to save
power, where input operands are gated off. If a user does not
dynamically switch from a logic operations mode to a multi-
plier mode, power gating off multiplier 251 input operands
saves power because multiplier 251 is bypassed when per-
forming logic operation mode functions.

Two separate sets of partial products may be provided from
multiplier 251 to M register 253 as a partial product operand
“U” on output 207 and a partial product operand “V” on
output 208. In this example, partial product operands U and V
may each be at most 45 bits wide. Partial product operands U
and 'V, and operand CQ may be provided to an ALU block 260,
as described below in additional detail. However, prior to a
description of ALU block 260, preadder-register block 204
and register block 242 are described in additional detail.

FIG. 3 is acircuit diagram depicting an exemplary embodi-
ment of preadder-register block 204. As described below in
additional detail, preadder-register block 204 may be
dynamically configured to operate as being O, 1, 2, or 3
registers deep.

Preadder-register block 204 includes multiplexers 301
through 309, registers 311 through 314, logic gates 321 and
322, and adder/subtractor 331. It should be appreciated that
even though bit widths are illustratively shown in FIG. 3, as
well as in FIGS. 2 and 4, bit widths other than, or the same as,
those illustratively shown herein, or a combination thereof,
may be used.

While not shown for purposes of clarity and not limitation,
control select inputs to multiplexers 301 through 305, 308,
and 309 may be provided from configuration memory cells of
FPGA fabric. Such configuration memory cells may be con-
figured from user provided configuration information. Thus,
in the context of an FPGA, when such FPGA is obtaining state
information as part of a power up cycle, the program states of
those memory cells determine selected outputs for multiplex-
ers 301 through 305, 308 and 309, and such memory cells are
not capable ot having their state changed without resetting the
FPGA. In other words, the status of multiplexers 301 through
305, 308, and 309 during operation is static. In contrast to the
static status of multiplexers 301 through 305, 308, and 309
during FPGA operation, multiplexer 306 is dynamically
operable; in other words, multiplexer 306 may have its con-
trol select changed during operation of an FPGA without
having to reset such FPGA. Such control select, in this exem-
plary embodiment, is provided by a portion of inmodes 202,
namely inmode 202-0, where the “-0” is used to indicate bit
position zero of an inmode bus 258 of FIG. 2.

With respect to multiplexer 307, a preadder input select
signal 317 may be used to select output of such multiplexer. In
this example, a configuration memory cell (not shown) is used
to provide such preadder input select signal 317 to multi-
plexer 307, and thus is a static signal as previously described.
However, in another embodiment, such a preadder input
select signal 317 may be provided as a dynamically alterable
signal, as multiplexer 307 may be dynamically operable.
However, for purposes of clarity and not limitation, it shall be
assumed that such a preadder input select signal 317 is pro-
vided from a configuration memory cell. Along those lines,

US 9,081,634 B1

7

even though static configuration memory cell provided con-
trol select signals to multiplexers are described herein, in
other configurations one or more of such static select signals
may be replaced with one or more corresponding dynamic
select signals.

Moreover, in addition to dynamic operation of multiplexer
306, logic gates 321 and 322, as well as adder/subtractor 331,
may be dynamically operated. Thus, such dynamically oper-
able components may be changed during operation of user
design. In this embodiment, inmodes 202-0 through 202-3 of
FIG. 3, as well as inmode 202-4 of FIG. 4, may be changed on
each cycle of a clock signal. For purposes of clarity by way of
example and not limitation, clock signaling such as may be
used herein is not shown.

Inmode 202-0 is provided as a dynamic control select
signal to multiplexer 306 for gating to provide either A input
211 or AC input 341 as delayed by either of A1 register 311 or
A2 register 312, by both A1 register 311 and A2 register 312,
or by neither A1 register 311 nor A2 register 312. Again, once
selected by memory cell state, a selected output from multi-
plexers 301 through 305 is static during operation without
resetting an FPGA.

Either A input 211 or AC input 341 may be output from
multiplexer 301. Output from multiplexer 301 is provided as
data input to A1 register 311 and as data input to multiplexer
302. Output of Al register 311 is provided as data input to
multiplexers 302, 304, and 306. Output of multiplexer 302 is
provided as data input to A2 register 312 and as data input to
multiplexer 303. Output of multiplexer 303 is provided as
data input to multiplexers 304 and 306, as well as being
provided as an X MUX output 342. Referring to FIG. 2, X
MUX output 342 of preadder-register block 204 may be com-
bined with output 442 of dual B register block 242 of FIG. 2
for an AB concatenated output 250.

For purposes of clarity by way of example and not limita-
tion, assuming a user has set multiplexers 302 and 303 to
select their bottom inputs as outputs, and assuming that a user
has selected AC input 341, namely A cascaded input from
another DSP slice, as an output of multiplexer 301, then AC
input 341 provided as data input to multiplexer 301 is regis-
tered by both A1 register 311 and A2 register 312 on an upper
data input of multiplexer 306, and on a lower input of multi-
plexer 306, AC input 341 is registered by just Al register 311.
Accordingly, it should be appreciated that a user may select
the register depth to an upper port of multiplexer 306, while
the register depth of input to a lower port of multiplexer 306
is always just Al deep. Multiplexers 301 through 304 and
registers 311 and 312 may be thought of as a register stage
391.

As previously mentioned, preadder-register block 204
includes a dual A register and a dual D register. By this it is
meant that Al register 311 and A2 register 312 are dual-
register configurable, even though both A1 and A2 registers,
only one of Al and A2 registers, or neither of Al and A2
registers may be used in providing input to logic gate 322 via
output of multiplexer 306. Furthermore, the dual D register is
in reference to D register 313 and AD register 314.

Again, it should be appreciated that the upper input to
multiplexer 306, as well as the lower input to multiplexer 304,
sourced from the output of multiplexer 301 may be no regis-
ters deep, either Al or A2 deep, or Al and A2 deep. Further-
more, again, the lower input of multiplexer 306, as well as the
upper input of multiplexer 304, is always A1 deep. Output of
multiplexer 304 is AC output (“ACOUT”) signal (“AC out-
put”) 343 of FIG. 2, which may be provided to another DSP
slice, similarly to AC input 341 being provided to DSP slice
200 of FIG. 2.

10

15

20

25

30

35

40

45

50

55

60

65

8

Whether an upper input or a lower input of multiplexer 306
is selected for output is controlled by the state of inmode
202-0, and output from multiplexer 306 is provided as data
input to logic gate 322. Even though AND gates are illustra-
tively depicted for logic gates 321 and 322, it should be
appreciated that other logic gates may be used in accordance
with the description herein. The other input of AND gate 322,
which is an inverted input, is coupled to receive inmode
202-1. For this embodiment, inmode 202-1 represents bit
position one of abus of inmodes 202. Output of AND gate 322
is provided as an input to multiplexer 307 and to an upper
input of multiplexer 305. Output of AND gate 322 may be
thought of as an A2 or A1 (“A2A1”) signal or data operand
383. Multiplexer 306 and AND gate 322 may be thought of as
being of a multiplexer-logic stage 393.

Another input to multiplexer 307 is a B2 or B1 (“B2B1™)
signal 381, which is obtained from register block 242. Along
those lines, multiplexer 307 may be thought of as a bridge
multiplexer bridging preadder-register block 204 and register
block 242. Output of multiplexer 307 is selected as between
data operands input thereto to select a preadder operand input
to adder/subtractor 331. Output of multiplexer 307 to adder/
subtractor 331 is generally referred to A path input 361.

D input 201 may be provided as data input operand to D
register 313 and to an upper input of input multiplexer 308.
Data output of D register 313 may be provided to a lower
input of input multiplexer 308. Output of input multiplexer
308 may be provided as a registered or unregistered version of
an input operand to an upper input of AND gate 321. A lower
input of AND gate 321 may be coupled to receive inmode
202-2, which for this embodiment is bit position two of a bus
of'inmodes 202. Output of AND gate 321 may be provided as
another input to adder/subtractor 331, namely D path input
362, such as to provide another preadder operand to adder/
subtractor 331.

Whether adder/subtractor 331 is configured for adding or
subtracting is controlled by inmode 202-3, which for this
embodiment is bit position three of a bus of inmodes 202.
Generally, D register 313, input multiplexer 308, AND gate
321 and adder/subtractor 331 may be thought of as an input
block or sub-block 392 of preadder-register block 204.

Output of adder/subtractor 331 may be provided as an AD
data operand or a result operand to a data input port of an
interim register, namely AD register 314, and to an input port
of an interim multiplexer, namely multiplexer 309. Output of
AD register 314 may be provided as another input to multi-
plexer 309. Output of multiplexer 309, namely a registered or
unregistered version of AD data, may be provided to another
input of multiplexer 305. Output of multiplexer 309 may be
referred to as AD data 382, referring back to A path 361 and
D path 362. Output of multiplexer 305 may be a multiplica-
tion operand signal, namely A multiplier (“A MULT”) signal
344. In this example, A multiplier signal 344 is provided to a
multiplier 251 of FIG. 2 as a multiplicand operand, though in
other configurations A multiplier signal 344 may be provided
as a multiplier operand.

Again, it should be appreciated that multiplexer 306, AND
gate 322, AND gate 321, adder/subtractor 331 are respec-
tively controlled for purposes of dynamic operation by
inmodes 202-0 through 202-3, respectively representing bit
positions zero through three of a bus of inmodes 202. While
inmodes 202-0 and 202-3 are used as control select signals for
either selecting an output or a function, inmodes 202-1 and
202-2 are operative, by their state, for affecting or not affect-
ing outputs of AND gates 322 and 321, respectively.

In addition to being able to dynamically control AND gates
321 and 322, output of either of AND gates 321 and 322 may

US 9,081,634 B1

9

be used to source a zero input to adder/subtractor 331.
Accordingly, it should be appreciated that it AND gate 322
provides a zero operand input to adder/subtractor 331, then
the input of D input 201 which may be provided as an output
of output multiplexer 305, may pass through registers 313 and
314, namely a two deep register path. Alternatively, if a zero
is sourced from the output of AND gate 321, and adder/
subtractor 331 is used, then it is possible to have a three deep
register path for either of A input 211 or AC input 341, namely
through A1 register 311, A2 register 312, and AD register 314.

FIG. 41s a circuit diagram depicting an exemplary embodi-
ment of dual B register block 242 of DSP slice 200 of FIG. 2.
B input signal (“B input”) 212 and BC or B cascade input
(“BCIN”) signal (“BC input”) 441 are provided as operand
inputs to multiplexer 401. Multiplexers 401 through 405 of
dual B register block 242, like multiplexers 301 through 305,
are static during operation, namely their outputs are estab-
lished during configuration of an FPGA and are not dynami-
cally reconfigurable during operation. Multiplexer 406, like
multiplexer 306, is dynamically operable responsive to
inmode 202-4, which for this embodiment represents bit posi-
tion four of a bus of inmode 202.

B1 register 411 and B2 register 412 correspond to Al
register 311 and A2 register 312. Likewise, multiplexers 401
through 405 respectively correspond to multiplexers 301
through 305. Furthermore, multiplexer 406 corresponds to
multiplexer 306. BC or B cascade output (“BCOUT”) signal
(“BC output™) 443 from multiplexer 404 corresponds to AC
output 343, though for this example with a smaller bit width.

Likewise, X multiplexer (“X MUX”) signal 442 corre-
sponds to X multiplexer signal 342, though again with a
smaller bit width for this example. It should be appreciated
that X multiplexer signals 342 and 442 may be AB concat-
enated as generally indicated as AB output 250 of FIG. 2 for
input to an X multiplexer 252.

Multiplexers 401 through 404 and registers 411 and 412
may generally be considered as being parts of a register stage
491. Multiplexer 406 and AND gate 422 may generally be
thought of as being parts of a multiplexer-logic stage 493.

Multiplexer 405, like multiplexers 304, 305, and 404 may
generally be thought of as an output multiplexer. Because
register stage 491 of dual B register block 242 is the same or
similar to a dual A register stage 391 of preadder-register
block 204, repeated description is avoided for purposes of
clarity. Likewise, because multiplexer-logic stage 493 is the
same or similar to multiplexer-logic stage 393 of preadder-
register block 204, repeated description is avoided for pur-
poses of clarity, except that a data operand output from AND
gate 422 is B2B1 signal 381.

Inputs to output multiplexer 405 are AD data or result
operand signal 382 and B2B1 data operand signal 381. Out-
put of multiplexer 405, which may be selected responsive to
a static B multiplexer select signal 495, is another multipli-
cation operand signal, namely B multiplier (“B MULT”) sig-
nal 444, which corresponds to A multiplier signal 344. B
multiplier signal 444 and A multiplier signal 344 for this
embodiment have different bit widths; however, both outputs
may be provided as input operands to a multiplier 251 of FI1G.
2. In this example, B multiplier signal 444 provides a multi-
plier operand to multiplier 251; however, in other embodi-
ments B multiplier signal 444 may be a multiplicand operand
provided to a multiplier.

With simultaneous reference to FIGS. 2 through 4, DSP
slice 200 is further described. Inmodes 202 busing may be
considered a dynamic control bus. In addition to inmodes
202, there may be a clock signal, a clock enable signal, a set
signal, or a reset signal, among other register control signals.

10

20

25

30

35

40

45

50

55

60

65

10

These signals are not shown as going into registers for pur-
poses of clarity and not limitation. For example, independent/
separate clock enable signals to registers may be used to allow
a2-deep A:B for selectively writing to either Al or A2 or both
Al and A2 based on configuration memory cell settings and
source of the input data. The same may be said for B1 and B2.

AB concatenated output 250 does not have M register 253
in its path. Thus, a multiply operation between A and B has
three pipeline register stages, and an add operation, such as an
addition of AB concatenated (“A:B”) and C has two register
stages. However, by the use of A2 register 312 and B2 register
412, registers A2 312 and B2 412 may be used to provide a
register pipeline stage which would otherwise be associated
with M register 253. In other words, the number of pipeline
stages for inputs to X multiplexer 252 may be configured to be
the same within DSP slice 200, which can be used to avoid
register misses, namely “bubbles.” Accordingly, by setting an
operational mode, as described below in additional detail, an
A:B+C operation for example and an A*B+C operation for
example may both be performed in three clock cycles, e.g.,
Al register 311 to A2 register 312 to a P register 271 of FIG.
2 for an A:B+C operation, and A1 register 311 to M register
253 to a P register 271 of FIG. 2 for A of an A*B+C operation
(e.g., likewise B1 register 411 to M register 253 to a P register
271 of FIG. 2). A Cregister of FIG. 2 has one less register than
A and B in both of the above examples, but such difference is
predictable for all operational modes and thus may be
accounted for in FPGA fabric to add in another register stage
for C. It should be understood that this allows for dynamically
alternating between multiply and add operation on alternate
clock cycles without a bubble.

Al register 311, and A2 register 312, as well as B1 register
411 and B2 register 412, may be used to provide a register file
function. Because of the dynamic control bus function of
inmodes 202, such register file may operate as a random
access register file. Alternatively, Al register 311, and A2
register 312, as well as B1 register 411 and B2 register 412,
may be configured to provide shift register logic (“SRL”).
Thus dual functionality of both a random access register file
and an SRL is provided within DSP slice 200 using dynamic
control via an inmodes bus 202. Thus, by bus, it should
generally be understood to mean either a group of signals or
a group of signal traces, or both.

Other functionality includes having preadder-register
block 204 used as a two-to-one multiplexer, namely by having
adder/subtractor 331 select between inputs thereto for output
to AD register 314 by having one of the operands be zero. In
other words, one of outputs of AND gates 322 and 321 may be
forced to zero respectively, responsive to inmodes 202-1 and
202-2. Additionally, if output of the A input path is a negative,
then a zero may be sourced from the operand input along the
D path to adder/subtractor 331 such that adder/subtractor 331
may be used to produce an absolute value of an A or AC
operand provided to adder/subtractor 331.

Thus, to recapitulate, inmode 202-0 is used as a none/Al/
A2 select signal. Inmode 202-1 may be used to zero output
along an A register path, namely registers Al and A2 (“A
registers”). In other words, the ability to zero output facili-
tates multiplexing between A registers and a D register with-
out using resets and without destroying register contents.
When inmode 202-1 is equal to a logic 1, A path input 361 to
adder/subtractor 331 is forced to zero, and thus D path input
362 to preadder 331 may be effectively selected for output.
Additionally, when inmode 202-1 is equal to logic 1, A path
input 361 to multiplexer 305 may be used to force A multi-
plier signal 344 to zero. However, in order to force A multi-
plier signal 344 to zero, the D port setting, namely the con-

US 9,081,634 B1

11

figuration memory cell setting for providing a control select
signal 395 to multiplexer 305 is set for disabling the D port,
namely “if use_D port=false.”

Inmode 202-2 may be used to zero output of D register 313
along the lines previously described with respect to inmode
202-1 and output of an A register selected path. Thus, D path
input 362 to adder/subtractor 331 would be a logic 0, which
may be used for facilitating multiplexing between A path
input 361 and D path input 362. Furthermore, inmode 202-1
and inmode 202-2 may be used for dynamic power gating for
power conservation. If inmode 202-1 is at a logic 1 state, the
A path input 361 to adder/subtractor 331 is forced to 0, and if
inmode 202-2 is at a logic O state, the D path input 362 to
adder/subtractor 331 is forced to 0. If both inputs to adder/
subtractor 331 are logic 0, operation of adder/subtractor 331
consumes less power as there is no transistor switching within
adder/subtractor 331 under such condition. Thus, by
“dynamic power gating,” it is meant that both inputs to adder/
subtractor 331 may be set to logic zero when adder/subtractor
331 functionality is not selected. By having fixed logic values
provided as operand inputs to adder/subtractor 331, adder/
subtractor 331 does not switch, and this may be used for
dynamic conservation of power. In other words, because
inmodes may be dynamically set for dynamically fixing oper-
and inputs to adder/subtractor 331, adder/subtractor function-
ality may be dynamically selected or deselected, and with
respect to the later, dynamic power conservation may be
implemented.

Inmode 202-3 may be used to have the A operand of A input
path 361 either added to or subtracted from the D operand of
D input path 362 by adder/subtractor 331. Again, dynamic
inversion of an A operand on A input path 361 may be used as
an absolute value function. In other words, a register value
heldin Al or A2 for example may be dynamically inverted by
having the D operand input path 362 forced to zero as previ-
ously described. Inmode 202-4 may be used as a B1/B2
register select signal in the same way that inmode 202-0 may
be used as an A1/A2 register select signal.

Furthermore, it should be appreciated that complex multi-
plication operations may be performed, such as (A+ai)*(B+
bi)=(AB-ab)+(Ab+aB)i. A and a may be separate operands
respectively input to A2 register 312 and Al register 311 by
using separate clock enable signals provided to those regis-
ters, and selectively outputting one of such two operands from
multiplexer 306 responsive to inmode 202-0. Likewise, B and
b may be separate operands respectively input to B2 register
412 and B1 register 411 by using separate clock enable sig-
nals provided to those registers, and selectively outputting
one of such two operands from multiplexer 405 responsive to
inmode 202-4. Operands A, B, a, and b may be stored locally
in BRAM. Because of operand reuse, BRAM may be
accessed in bursts of every other two clock cycles by DSP
slice 200, and may be read once for the example complex
multiplication operation, as A1, A2, B1 and B2 registers may
be used to locally store the real and imaginary parts of such
operands. Even though the example of a complex multiplica-
tion was used, it should be understood that the same may be
said for performing a sequential multiplication, such as (A:a)
*(B:b) for example. For purposes of clarity by way of
example and not limitation, suppose 42 bits*34 bits is for
(A:a)*(B:b), then the result may be obtained by A*B+sh17
(A*0b+B*00000000a+sh17(0b*00000000a), where “sh17”
indicates a 17 bit shift.

FIG. 5 is a table diagram depicting an exemplary embodi-
ment of an inmode function table 500. The first five columns
of'table 500 respectively show possible logic states of inmode
bits four through zero respectively corresponding to inmodes

10

15

20

25

30

35

40

45

50

55

60

65

12

202-4 through 202-0. Inmode 202-4 is a B2/B1 register select
signal, and thus if a logic O is the state of inmode 202-4,
contents of register B2 may be provided as multiplier B port
444 input, and if inmode 202-4 is a logic state 1, multiplier B
port 444 input is the contents of B1 register 411. Accordingly,
logic 0 and 1 of the first column of table 500 respectively
correspond to B2 and B1 of the last column of table 500.

The sixth column of table 500 indicates programming state
of a memory cell used to provide control select control of
multiplexer 305 of FIG. 3, which is generally indicated as A
multiplier select signal (“AMULTSEL”) 395 provided to out-
put multiplexer 305. For this example, it is assumed thata B
multiplier select signal (“BMULTSEL”) 495 is set to logic 0.
Thus, A multiplier select signal 395 indicates whether the D
port, namely D input 201, is in use. As indicated in the first
four rows of table 500, a false value indicates that the D port
of preadder-register block 204 is not in use. The remaining
rows in column 395, which indicate a true value for A multi-
plier select signal 395, means that the D port of preadder-
register block 204 is in use.

The seventh column of table 500 indicates the operand
input on multiplier A port 344. The possible operand inputs
illustratively shown are the values held in Al or A2 for D
registers. Additionally, as previously described, a logic 0 may
be provided as A multiplier output 344. Furthermore, the
value obtained by adding the operand values of D+A2, D+Al,
D-A2, or D-Al, as stored in AD register 314 may be pro-
vided as A multiplier output 344. The notation A1/A2 and
B1/B2 is used to describe one- and two-deep registers,
respectively. If A input operands to adder/subtractor 331 are
gated off, then D register 313 and AD register 314 in combi-
nation appear like a two-deep registers for D port 201. Thus,
the notation D1/D2 respectively refers to D/AD registers for
one- and two-deep registers, respectively.

Multiplier 251 may be coupled to obtain multiplication
operands via A multiplier signal 344 and B multiplier 444
respectively from preadder-register blocks 204 and 242.
However, these multiplication operands may both be AD data
signal 382, namely the same operand. In other words, pread-
der-register block 204 and register block 242 may be config-
ured such that the bridged combination provides a same first
multiplication operand and second multiplication operand to
multiplier 251 to obtain partial products 207 and 208 for
obtaining a square of an adder/subtractor 331 result operand,
namely a square of AD data 382.

Returning to FIG. 2, ALU block 260 may include: input W
multiplexer 254, input X multiplexer 252, inputY multiplexer
256, input Z multiplexer 258, carry multiplexer 274, pattern
detect multiplexer 275, input register 277, input register 278,
input register 279, input register 276, output register 261,
output register 263, output register 264, output register 267,
output register 266, comparator 265, and ALU 262. Input
register 277 may be coupled to receive operation modes (“op-
modes”) 283. Opmodes 283 may be used to provide control
select signals to W, X, Y, and Z multiplexers. Input register
278 may be coupled to receive carry in select signals 284 to
provide select signals to carry multiplexer 274. Output of
carry multiplexer 274 may be provided as an input to ALU
262. A carry in signal 285 may be provided to input register
279 for providing an input to carry multiplexer 274, and a
carry cascade C operand input/multiplier sign input signal
282 may be provided as another input to carry multiplexer
274. ALU mode signals 286 may be provided to input register
276 for providing as an input to ALU 262.

A C operand output (“CQ”) 287 from C register 206 may
be provided as an input to pattern detect multiplexer 275, and
a configuration memory cell-based pattern select signal 288

US 9,081,634 B1

13

may be provided as a control select to pattern detect multi-
plexer 275. Output of pattern detect multiplexer 275 may be
provided to comparator 265. Another input to comparator 265
may be one or more bits of an output bus 270 of ALU 262.
Output of comparator 265 may be provided to output register
266 to provide a pattern detect signal 273. A grouping of 48
bits of an output bus 270 of ALU 262 may be provided to
output register 267 to provide product (“P”) signal 272, and
another grouping of four bits of an output bus 270 of ALU 262
may be provided to output register 264 to provide carryout
signal 271. P signal 272 may further be provided as a P
cascade output signal to another DSP slice 200 as P cascade
input signal 281 of such other DSP slice 200. Another output
bus 280 of AL U 262 may be provided to output register 263 to
provide XOR output 269. Yet another output bus 290 of ALU
262 may be provided to output register 261 to provide carry
cascade C/multiplier sign output signal 268.

Input Z multiplexer 258 may be coupled to receive CQ
signal 287, a logic 0 input, and P signals 281 and 272. Bus
widths for all inputs to W, X, Y, and Z multiplexers are not
illustratively depicted, and thus in some instances even
though a single line is illustratively indicated, such single line
may actually be multiple lines to form a parallel bus input, as
should be understood from the description herein. Input Y
multiplexer 256 is coupled to receive CQ signal 287, a logic
1 which is effectively a -1 (i.e. as all input bits are logic 1s for
a 2s complement notation) input, a logic 0 input, and a partial
product V input 292. Such a logic one input to input Y mul-
tiplexer 256 may be used as a sign bit. Input X multiplexer 252
is coupled to receive a partial product U input 293, a logic 0
input, AB concatenated signal 250, and P signal 272. Input W
multiplexer 254 is coupled to receive CQ signal 287, P signal
272, a logic 0 input, and a round constant (“RND”) signal
291.

An output of each of W, X, Y, and Z multiplexers is pro-
vided as an input to ALU 262. Again, opmodes signals 283
registered in input register 277 are provided as control select
inputs to W, X, Y, and Z multiplexers. Other than separate
partial products U 293 and V 292, an additional W input
multiplexer 254, round constant signal 291, a modified ALU
262, an output bus 280, output registers 263, an output XOR
signal 269, and additional opmodes signals 283 for input
register 277 to provide as control select signals to W multi-
plexer 254, remaining components of ALU block 260 are
known, and thus are not described in unnecessary detail
herein for purposes of clarity. Thus, for purposes of clarity,
generally only separate partial products U 293 and V 292, W
input multiplexer 254, round constant signal 291, modified
ALU 262, output bus 280, output registers 263, output XOR
signal 269, and additional opmodes signals 283 for input
register 277 to provide as control select signals to W multi-
plexer 254 are described in further detail below for purposes
of clarity and not limitation.

Partial product input U 293 and partial product input V 292
are respectively sourced from M register block 253 as output
as separate sets of partial products 207 and 208 from multi-
plier 251. ALU block 260 is coupled to preadder-register
block 204, register block 242, as well as M register block 253
and C register block 206. From the above description, it
should be appreciated that a product P output signal 272 of
ALU block 260 may be fed back to input W, X, and Z multi-
plexers.

To recapitulate, a DSP slice 200 has been described, which
may be cascaded with one or more other DSP slices 200 to
support larger fused data paths, such as for high-performance
computing (“HPC”) for example. Various sized phase factors
may be used, such as for Fast Fourier Transforms (“FFTs”).

20

25

35

40

45

50

14

Furthermore, with the addition of W multiplexer 254, a 4:2
compression ratio may be provided. Round constant 291 may
be configuration memory cell-based, for arithmetic opera-
tions such as AxB+C+RND for example, among many other
types of arithmetic operations some of which are listed
herein. Additionally, inclusion of W multiplexer 254 allows
for a complex multiply or complex multiply accumulate
(“CMACC”) with as few as three DSP slices 200. Along those
lines, a multiply accumulate function may be provided with a
single DSP slice 200. A product P cascade accumulate may
also be provided with a single DSP slice 200, such as for a
polyphase decimator as in finite impulse response (“FIR”)
filters.

Providing a 27-bit coefficient input capability along with
an 18-bit pre-addition capability allows for instrumentation
precision. With a preadder-register block 204 having a 27-bit
input capability, a user may have 18-bit preadder input num-
bers with a 19-bit result. B port operands may be signed-
extended to 27-bits for preadder input. Depending on con-
figuration memory cell programming, (D+/-A)**2 or (D+/-
B)**2, where “**2” means raised to the power of two or
squared, mathematical operations may be performed, such as
foruseinvideo DSP applications. Inmode control signals 202
allow dynamic switching from (D+/-A)**2 to A square or D
squared, or from (D+/-B)**2 to B squared or D squared. By
providing A squared or B squared in a DSP slice 200, per-
forming such operations in programmable fabric resources
may be avoided. DSP slice 200 may be used for (D+/A)*A or
(D+/-B)*B arithmetic operations, which supports X**2+
X+C operations if D=1 by using a C port input for a constant.
By having a 27-bit preadder, a 26-bit D value may be added
with a 26-bit A value and not have output of preadder-register
block 204 wrap, namely a 27-bit output supports bit growth of
26-bit input operands. For example, for a 27-bit coefficient,
an A port may get a 27-bit coefficient input, while a B port
may get a preadder output limited to 18-bits, only 17-bit
signed, so no wrapping occurs even though a preadder input
is 27-bits.

FIG. 6 is a block/circuit diagram depicting an exemplary
ALU 262. ALU 262 includes bitwise adder 631, multiplexers
634 and 635, adder 641, XOR-MUX tree 640, and AL U mode
registers 620 through 623. FIG. 7 is a table diagram depicting
an exemplary operations table 700 for ALU 262 of FIG. 6.
With simultaneous reference to FIGS. 1 through 7, ALU 262
is further described. In operations table 700, for example,
logic 1s in Y multiplexer output column 701 may represent a
bus of logic 1s, namely all logic 1s, or a -1 in a 2’s compli-
ment notation.

ALU mode registers 620 through 623 respectively receive
ALU mode signals 610 through 613. Columns 710 through
713 of ALU mode columns 702 indicate combinations of bit
values for ALU mode signals 610 through 613 in associated
rows 704. In table 700, column 701 indicates bit values in
associated rows 704 output from Y multiplexer 256 for such
ALU modes 702. Column 703 indicates functions performed
by ALU 262 for ALU modes 702 and Y multiplexer output
701 input settings. Along those lines, ALU 262 is config-
urable to provide a plurality of functions including without
limitation addition, subtraction, XOR, AND, XNOR, NAND,
OR, NOR, X'+Z, X+7!, X'Z, and XZ7', where, for example,
X'Z is a logic inversion of an output of X multiplexer 252
logically ANDed with an output of Z multiplexer 258. When
a logic operations mode is used for ALU 262, multiplier 251
may be bypassed. Thus, X multiplexer 252 output may be
used to provide A:B or P; Y multiplexer 256 may be used to
provide a logic 0 output for third line input to 3-input XORs
of bitwise adder 631 to effectively provide for example 48

US 9,081,634 B1

15

2-input XOR functions; or Y multiplexer 256 may output CQ
to provide 48 3-input XOR functions. Thus, for example, row
nine of table 700 has a Y multiplexer 256 output as a logic 1
to provide 48 2-input XOR functions, where effectively Y
multiplexer 256 all logic 1s input cancels an ALUMODE][1]
=1 inversion. However, for example, row three of table 700
has Y multiplexer 256 output as CQ to provide either 48
2-input XOR functions or 48 3-input XOR functions. Z mul-
tiplexer 258 may be used to select either CQ, P, PCIN as an
operand input.

Outputs 630 from one or more of W multiplexer 254, X
multiplexer 252, Y multiplexer 256, and Z multiplexer 258 are
provided as input to bitwise adder 631. Output of W multi-
plexer 254 may be set at logic 0 for a wide XOR application,
as described below in additional detail. A 4:2 compression is
provided with a first and second 3:2 compressors in bitwise
adder 631. Bitwise adder 631 has a first 3:2 compressor using
three-input XORs at a first level of XOR operations and
having an S bus output 633 and carry out bus output 632, as
described below in additional detail. A second 3:2 compres-
sor of bitwise adder 631 includes output from W multiplexer
254. The second 3:2 compressor likewise uses a first level of
three input XOR gates, though with input from W multiplexer
254, of bitwise adder 631, as well as buses 633 and 632. If
logic operations of ALU 262 are being used, there is bypass
logic so that bitwise adder 631 appears not to have a second
3:2 compressor. In this configuration for example, a wide
XOR tree may be used. However, when arithmetic operations
are being performed by ALU 262, such second 3:2 compres-
sor function may be used to provide 4:2 compression in
accordance with the description herein. ALU mode signal 610
may be provided to ALU mode register 620, and output of
ALU mode register 620 may be provided as control signaling
to bitwise adder 631. A sum S output 633 and a carry output
(“CO”) 632 may be output from bitwise adder 631. Along
those lines, bitwise adder 631 effectively may provide an
initial row of an XOR tree, and thus a sum S output 633 may
be used to feed subsequent XOR gates of XOR-MUX tree
640. In other words, a first or initial level of XOR gates of an
XOR-MUX tree 640 may be provided by logic operation
circuitry of ALU 262. A second or next higher level of XOR
gates of XOR-MUX tree 640 may be coupled to receive sum
S output 633. Though XOR gates of bitwise adder 631 are not
illustratively depicted for purposes of clarity, it should be
appreciated that bitwise adder 631 includes such XOR gates
such as for addition of partial products. Likewise, even
though single signal lines are illustratively depicted for pur-
poses of clarity and not limitation, such signal lines in some
instances may be multiple parallel lines.

Sum S output 633 and carry output 632 may be provided as
respective inputs to multiplexer 634, and S output 633 may be
provided as input to XOR-MUX tree 640. Carry output 632
may further be provided as input to multiplexer 635, and
another input to multiplexer 635 is alogic 0 input. ALU mode
signal 613 may be provided to multiplexer 634 via ALU mode
register 623 as a control select input thereto. Likewise, ALU
mode signal 612 may be provided to multiplexer 635 via AL U
mode register 622 as a control select input thereto. Outputs
from multiplexers 634 and 635 may be provided as inputs to
adder 641. ALU mode signal 611 may be provided to adder
641 as control signaling via ALU mode register 621. Output
of'adder 641 may be product P signal 272. Output of XOR-
MUX tree 640 may be output bus 280.

ALU block 260, including without limitation ALU 262,
may be configured to dynamically provide either a product
output P 272 or an XOR output 280 at a time. In other words,

10

25

40

45

50

55

16
ALU mode signals 610 through 613 may be dynamically
changed to alter an active output of ALU 262.

FIG. 8 is a circuit diagram depicting an exemplary portion
of XOR-MUX tree 640. Sum S output 633 is provided to a
second XOR column or level 811 of an overall XOR tree.
Again, bitwise adder 631 effectively provides a first column
or level of such XOR tree with output of S output 633 bits. In
this example, from bottom to top, S output 633 bits S(0)
through S(47) are provided sequentially in groups of six bits
each respectively to XOR gates 811-1 through 811-8. Even
though particular numerical examples are provided for pur-
poses of clarity and not limitation, it should be understood
that other values may be used, including without limitation
other groupings of bits and/or bit widths, in other configura-
tions.

Outputs of XOR gates 811-1 through 811-8 respectively
are XOR outputs 801-1 through 801-8, which are collectively
referred to as “XOR12” signals 801. Because initial XORing
is provided with bitwise adder 631 on 12 bits per branch for
XOR-MUX tree 640, output of an XOR gate 811 represents
two levels of XORing of 12 bits to produce a single bit. For
this example, it is assumed that two-input XORing is per-
formed by bitwise adder 631 for purposes of clarity by way of
example and not limitation. This second level of XORing
provided with XOR gates 811 is provided separately from
logic operation circuitry of ALU 262. XOR outputs 801-1
through 801-8 may be tapped to provide respective single bit
inputs to 2-to-1 multiplexers for Single Instruction Multiple
Data (“SIMD”) operation, as described below in additional
detail.

XOR outputs 801-1 through 801-8 are sequentially pro-
vided in respective pairs as inputs to XOR gates 812-1
through 812-4 of a third XOR column or level 812. Output of
XOR gates 812-1 through 812-4 respectively are XOR out-
puts 802-1 through 802-4, which are collectively referred to
as “XOR24” signals 802 to indicate an XORing of two
XOR12s of a same branch. Again, XOR outputs 802-1
through 802-4 may be tapped to provide respective single bit
inputs to 2-to-1 multiplexers for SIMD operation, as
described below in additional detail.

XOR outputs 802-1 through 802-4 are sequentially pro-
vided in respective pairs as inputs to XOR gates 813-1
through 813-2 of a fourth XOR column or level 813. Output
of XOR gates 813-1 through 813-2 respectively are XOR
outputs 803-1 and 803-2, which are collectively referred to as
“XOR48” signals 803 to indicate an XORing of two XOR24s
of'a same branch. Again, XOR outputs 803-1 and 803-2 may
be tapped to provide respective single bit inputs to 2-to-1
multiplexers for SIMD operation, as described below in addi-
tional detail.

Lastly, XOR outputs 803-1 and 803-2 are provided as a
respective input pair to XOR gate 814 of a fifth XOR column
or level. Output of XOR gate 814 is XOR output 804, which
is referred to as “XOR96” signal 804 to indicate an XORing
of two XOR48s feeding such final XOR gate 804.

By adding in XOR tree portion of XOR-MUX tree 640 to
an ALU, such XOR tree portion may be used for Ethernet
Media Access Control (“EMAC”), and cyclic redundancy
coding (“CRC”), among other types of applications for wide
XOR trees. Along those lines, increased efficiency for EMAC
CRC and/or Error Correction Code (“ECC”) applications
may be provided with wide XOR trees using one or more DSP
slices 200. Furthermore, XORing in configurable or program-
mable hard macro DSP slices 200 has significant perfor-
mance advantages over doing same using programmable fab-
ric resources.

US 9,081,634 B1

17

FIG. 9 is a block/circuit diagram depicting another exem-
plary portion of XOR-MUX tree 640 coupled to output reg-
isters 263 to provide XOR/SIMD output 269. Again, even
though particular numerical examples are provided for pur-
poses of clarity and not limitation, these or other numerical
examples may be used in other configurations. With simulta-
neous reference to FIGS. 1 through 9, such other exemplary
portion of XOR-MUX tree 640 is further described.

A multiplexer block 900, which may be used for SIMD,
may be coupled to taps of an XOR tree of FIG. 8, as described
below in additional detail. Multiplexer block 900 includes
multiplexers 900-1 through 900-7. As there are 15 taps on
XOR tree of FIG. 8, XOR 12 output 801-7 may be directly
provided to a data input of output register 263-7.

Multiplexers 900-1 through 900-7 may have their respec-
tive control select signals provided by programming configu-
ration memory cells. Along those lines, all of multiplexers
900-1 through 900-7 optionally may be controlled with a
single configuration memory cell 916, or multiple configura-
tion memory cells 916 may be used to individually provide
the different select signals described herein for the various
XORm-bit configurations. With respect to the latter, a con-
figuration memory cell XOR96 select signal 901-1 may be
provided as a control select signal to multiplexer 900-7. A
configuration memory cell XOR48 select signal 901-2 may
be provided as a control select signal to multiplexers 900-5
and 900-6. A configuration memory cell XOR24 select signal
901-3 may be provided as a control select signal to multiplex-
ers 900-1 through 900-4.

XOR96 output 804 and XOR12 output 801-8 are provided
as inputs to multiplexer 900-7 from which is selected an
output for input to output register 263-8. XOR48 output
803-2 and XOR12 output 801-6 are provided as inputs to
multiplexer 900-6 from which is selected an output for input
to output register 263-6. XOR48 output 803-1 and XOR12
output 801-5 are provided as inputs to multiplexer 900-5 from
which is selected an output for input to output register 263-5.
XOR24 output 802-4 and XOR12 output 801-4 are provided
as inputs to multiplexer 900-4 from which is selected an
output for input to output register 263-4. XOR24 output
802-3 and XOR12 output 801-3 are provided as inputs to
multiplexer 900-3 from which is selected an output for input
to output register 263-3. XOR24 output 802-2 and XOR12
output 801-2 are provided as inputs to multiplexer 900-2 from
which is selected an output for input to output register 263-2.
Lastly, XOR24 output 802-1 and XOR12 output 801-1 are
provided as inputs to multiplexer 900-1 from which is
selected an output for input to output register 263-1. Each of
multiplexers 900 has two data inputs respectively coupled to
two output taps at different levels of the XOR tree of FIG. 8.

Collectively, outputs from multiplexer block 900, as well
as XOR12 output 801-7, provide output bus 280 for output
registers 263. Output registers 263 may all be clocked respon-
sive to a clock signal 920 for providing XOR/SIMD output
269. Each of output registers 263 may be an output register of
DSP slice 200, as previously described, and each of multi-
plexers 900 may be internal to ALLU 262. XOR-MUX tree 640
may be configurable to be either an octal XOR12 output, a
quad XOR24 output, a dual XOR48 output, or a single
XOR96 output. DSP slices 200 may be cascaded to provide
wider XOR outputs too. For example, two DSP slices 200
may be cascaded to create an XOR192 output, namely 192
input bits which may be reduced down to a single XOR192
output bit. This allows for an increase in efficiency such as for
Forward Error Correction (“FEC”), including without limi-
tation EFEC and GFEC, due to SIMD granularity.

15

25

30

40

45

18

With respect to an FPGA implementation having multiple
DSP slices 200, such a wide XOR capability may be used to
maintain DSP to lookup table (“LUT”) ratios in wired vs.
wireless designs.

FIG. 10 is a table diagram depicting an exemplary arith-
metic operations table 1000 for DSP slice 200 of FIG. 2. All
columns are respectively identified by their associated signals
as previously described herein, except for column 1001
which indicates preadder/multiplier functions provided by
associated signal states of signals 202-0 through 202-4, 317,
395, 495, 344, and 444.

FIG. 11 is a block diagram depicting an exemplary set of
DSP slices 1100. Set of DSP slices 1100 include a DSP slice
200-1,aDSP slice 200-2, and a DSP slice 200-3. For purposes
of clarity and not limitation, DSP slices 200-1 through 200-3
are simplified versions of DSP slice 200 of FIG. 2. Set of DSP
slices 1100 is configured as a 26x17 complex multiply accu-
mulator with round constant input over multiple clock cycles.
Along those lines, on a clock cycle, a round constant 291 is
input to ALU 262 via an input W multiplexer respectively of
DSP slices 200-1 and 200-2, as generally indicated with RND
291 dashed lines, and, on a subsequent clock cycle, a product
P output 272 is fed back to ALU 262 via such input W
multiplexer respectively of DSP slices 200-1 and 200-2, as
generally indicated with dashed lines 1120 and 1121. Thus,
either a round constant 291 or a product P 272 is input to a
respective ALU 262 of DSP slices 200-1 and 200-2. By feed-
ing back a product P output 272 to ALU 262, a single DSP
slice 200 may function as an accumulator.

For purposes of clarity by way of example and not limita-
tion, a complex multiply for the following Equations is
described:

(4_re25:014_im[25:0))x(B_ref16:0]+jB_im[16:
0])=Out__ref43:0]+/0ut_imf43:0]; (€8]

Out__ref43:01=((4_re[25:01xB_ref16:0])-(4_im
[25:0]xB_im[16:0])); and 2)

Out__imf43:0]1=((4__re[25:0]1xB__im[16:0))+(4_im

[25:0]xB__re[16:0])). ©)

Using three DSP slices with preadders, such Equations (2)
and (3) may be re-factored as indicated in the following
Equations:

Out_ref43:01=((4__re[25:0]-4__im[25:0])xB_im
[16:0D)+((B_ref16:0]-B_im[16:0])x4__ref25:
0]); and Q)
Out_imf43:0]1=((4_ref25:0]1-4__im[25:0))xB_im
[16:0D)+((B_ref16:01+B_im[16:0])x4__im[25:
o) ®

A common factor that is shared in Equations (4) and (5) is:

Q)

With Equations (1) through (6) borne in mind, set of DSP
slices 1100 is further described. To extend the description
below to a complex multiply accumulate, a time parameter
may be added to output real and output imaginary so that N
and N+1 indexes are added together recursively, and bit width
is allowed to grow to a 47:0 type size for example.

A common input factor 1103 is provided to C registers 206
of DSP slices 200-1 and 200-2. An imaginary portion of an A
variable is provided as A imaginary input 1101 to a two clock
cycle delay register file 1130 and to D register 313 of DSP
slice 200-3, where such register file may be provided using
programmable fabric resources. A real portion of such A
variable is provided as A real input 1105 to A1 register 311 of
DSP slice 200-3. A real portion of a B variable is provided as

((4_ref25:01-4_im[25:0])xB_im[16:0]).

US 9,081,634 B1

19

B real input 1102 to a two clock cycle delay register file 1131,
where such register file may be provided using programmable
fabric resources. An imaginary portion of a B variable is
provided as B imaginary input 1104 to B1 register 411 of DSP
slice 200-3.

Output of register file 1130 is provided to register Al
register 311 of DSP slice 200-1. Output of register file 1131 is
provided to D registers 313 of DSP slices 200-1 and 200-2.

With reference to DSP slice 200-3, output of Bl register
411 is provided to B2 register 412, as well as to B1 register
411 of DSP slice 200-2. Output of A1 register 311 is provided
to A2 register 312 and to subtractor 331, and output of D
register 313 is likewise provided as an input to subtractor 331
for a subtraction operation. Output of A2 register 312 is
provided to Al register 311 of DSP slice 200-2. Output of
subtractor 311 is provided to AD register 314. Output of AD
register 314 is provided along path A to multiplier 251 for
multiplication with output from B2 register 412 provided
along path B. Output of multiplier 251 is provided to M
register 253, and output of M register 253 is provided to ALU
262 for subtraction. Output of ALU 262 is provided to output
P register 267 for output as a P product output 272, which is
a common C output factor 1113 having a 44-bit width. Com-
mon C output factor 1113 happens to be the same signal as
common C input factor 1103.

With reference to DSP slice 200-2, output of Al register
311 is provided to A2 register 312. Output of B1 register 411
is provided to B2 register 412, as well as to B2 register 412 of
DSP slice 200-1. Output of B2 register 412 is provided as an
input to subtractor 331 for a subtraction operation. Output of
D register 313 is likewise provided as an input to subtractor
331 for a subtraction operation. Output of subtractor 331 is
provided to AD register 314. Output of AD register 314 is
provided along path B to multiplier 251 for multiplication
with output from A2 register 312 provided along path A.
Output of multiplier 251 is provided to M register 253, and
output of M register 253 is provided to ALU 262 for addition
with an output from C register 206 and a round constant 291
from input W multiplexer 254 on a clock cycle. Output of
ALU 262 is provided to output P register 267 for output as a
P product output 272, which is a real portion output 1112
having a 48-bit width. Such real portion output 1112 on a
subsequent clock cycle is fed back, as generally indicated by
dashed line 1121, to input W multiplexer 254 for providing to
ALU 262 for an addition accumulation operation.

With reference to DSP slice 200-1, output of Al register
311 is provided to A2 register 312. Output of B2 register 412
is provided as an input to adder 331 for an addition operation
with output of D register 313. Output of AD register 314 is
provided along path B to multiplier 251 for multiplication
with output from A2 register 312 provided along path A.
Output of multiplier 251 is provided to M register 253, and
output of M register 253 is provided to ALU 262 for addition
with an output from C register 206 and a round constant 291
from input W multiplexer 254 on a clock cycle. Output of
ALU 262 is provided to output P register 267 for output as a
P product output 272, which is an imaginary portion output
1111 having a 48-bit width. Such imaginary portion output
1111 on a subsequent clock cycle is fed back, as generally
indicated by dashed line 1120, to input W multiplexer 254 for
providing to ALU 262 for an accumulation operation.

By using A and/or B cascaded inputs, shift register logic
may be reduced. Additionally, as previously described, a mul-
tiply accumulate capability of the DSP slice provides addi-
tional functionality, which may be performed independently
of programmable fabric resources. Furthermore, a preadder
may be sourced from a B register or an A register. Moreover,

10

20

25

30

35

40

45

50

55

60

65

20

(A_re-A_im) may be created by starting with (A_im-A_re)
and using a post adder to provide a negation of X, namely
x(-1), function. Therefore, A_re may be on an A port instead
of'a D port to start an A cascade on the bottom of'a DSP slice
200. A C port in an upper DSP slice 200 may be used to
eliminate an adder instantiated in programmable fabric
resources in instances when a complex multiplier is extended
from a 27x18 to a 27x19. In addition to a complex multiply
accumulator with a 48-bit accumulation using input W mul-
tiplexer 254 for inclusion of a round constant and accumula-
tion feedback, a 96-bit accumulation may be provided. For a
96-bit accumulation, both lower multiplications are sign
extended. Furthermore, for larger multipliers, such as 54x54
or larger, a reduction in DSP slices may be provided using
DSP slices 200. Along those lines, DSP slices 200 allow fora
C port to be usable when a P cascade input port is also being
used.

While the foregoing describes exemplary embodiments,
other and further embodiments in accordance with the one or
more aspects may be devised without departing from the
scope thereof, which is determined by the claims that follow
and equivalents thereof. Claims listing steps do not imply any
order of the steps. Trademarks are the property of their
respective owners.

What is claimed is:

1. An integrated circuit, comprising:

a first digital signal processing (“DSP”) block having an
input interface for receiving a first operand input, a sec-
ond operand input, a third operand input, and a fourth
operand input;

wherein the first DSP block comprises:

a preadder-register block coupled to receive the first
operand input, the second operand input, and the
fourth operand input;

a multiplier coupled to the preadder-register block to
receive a multiplicand operand and a multiplier oper-
and therefrom:;

a first register block coupled to the multiplier to receive
afirst set of partial products and a second set of partial
products from the multiplier;

a second register block coupled to receive the third oper-
and input;

an arithmetic logic unit (“ALU”) block coupled to the
pre-adder-register block, the first register block and
the second register block;

wherein the ALU block comprises:
afirst multiplexer coupled to receive the third operand

input from the second register block and a feedback
product input from a product output of the ALU
block;

a second multiplexer coupled to receive the first set of
partial products and the product input fed back;

athird multiplexer coupled to receive the second set of
partial products and the third operand input from
the second register block;

a fourth multiplexer coupled to receive the product
input fed back and the third operand input from the
second register block; and

an ALU coupled to receive outputs from each of the
first multiplexer, the second multiplexer, the third
multiplexer, and the fourth multiplexer;

wherein the ALU block includes an XOR tree;

wherein the XOR tree comprises:

a first level of XOR gates provided from logic operation
circuitry of the ALU;

US 9,081,634 B1

21

a second level of XOR gates higher than the first level of
XOR gates coupled to outputs of the first level of
XOR gates;

wherein the second level of XOR gates is provided sepa-
rately from the logic operation circuitry of the ALU; 5

athird level of XOR gates higher than the second level of
XOR gates coupled to outputs of the second level of
XOR gates; and

an XOR gate higher than the third level of XOR gates
coupled to outputs of the third level of XOR gates;

a plurality of output registers;

wherein a first portion of the plurality of output registers is

respectively coupled to outputs of the plurality of mul-

tiplexers; and

wherein a second portion ofthe plurality of output registers

is coupled to an output tap of the output taps of the XOR

tree.

2. The integrated circuit according to claim 1, wherein the
ALU of the ALU block includes the XOR tree.

3. The integrated circuit according to claim 2, wherein the
ALU block is configured to dynamically provide either a
product output or an XOR output at a time.

4. The integrated circuit according to claim 2, wherein the
ALU block further includes a Single Instruction Multiple
Data (“SIMD”) block coupled to the XOR tree.

5. The integrated circuit according to claim 4, wherein the
SIMD block comprises a plurality of multiplexers coupled to
output taps of the XOR tree.

6. The integrated circuit according to claim 2, further com-
prising:

a second DSP block coupled to receive the product output

of the ALU block of the first DSP block;

wherein the ALU of the ALU block of each of the first DSP

block and the second DSP block includes a first XOR

tree; and

wherein the first DSP block and the second DSP block are

cascade coupled to one another to provide a second XOR

tree which is a combination of the first XOR tree of each
of the first DSP block and the second DSP block.

7. An integrated circuit, comprising:

a plurality of digital signal processing (“DSP”) slices

coupled to one another for performing multiplication of

a first complex variable and a second complex variable;

wherein each of the DSP slices has an input interface for

receiving a first operand input, a second operand input, a 45

third operand input, and a fourth operand input;

wherein each of the DSP slices comprises:

a preadder-register block coupled to receive the first
operand input, the second operand input, and the
fourth operand input; 50

a multiplier coupled to the preadder-register block to
receive a multiplicand operand and a multiplier oper-
and therefrom;

a first register block coupled to the multiplier to receive
afirst set of partial products and a second set of partial 55
products from the multiplier;

10

15

20

30

35

22

a second register block coupled to receive the third oper-
and input;

an arithmetic logic unit (“ALU”) block coupled to the
pre-adder-register block, the first register block and
the second register block;

wherein the ALU block comprises:
afirst multiplexer coupled to receive the third operand

input from the second register block and a feedback
product input from a product output of the ALU
block;

a second multiplexer coupled to receive the first set of
partial products and the product input fed back;

athird multiplexer coupled to receive the second set of
partial products and the third operand input from
the second register block;

a fourth multiplexer coupled to receive the product
input fed back and the third operand input from the
second register block; and

an ALU coupled to receive outputs from each of the
first multiplexer, the second multiplexer, the third
multiplexer, and the fourth multiplexer;

wherein the ALU block includes an XOR tree;

wherein the XOR tree comprises:

a first level of XOR gates provided from logic operation
circuitry of the ALU;

a second level of XOR gates higher than the first level of
XOR gates coupled to outputs of the first level of
XOR gates;

wherein the second level of XOR gates is provided sepa-
rately from the logic operation circuitry of the ALU;

athird level of XOR gates higher than the second level of

XOR gates coupled to outputs of the second level of

XOR gates; and

an XOR gate higher than the third level of XOR gates
coupled to outputs of the third level of XOR gates;

a plurality of output registers;

wherein a first portion of the plurality of output registers is

respectively coupled to outputs of the plurality of mul-

tiplexers; and

wherein a second portion of the plurality of output registers

is coupled to an output tap of the output taps of the XOR

tree.

8. The integrated circuit according to claim 7, wherein the
fourth multiplexer is coupled to receive a round constant for
input to the ALU.

9. The integrated circuit according to claim 7, wherein:

the fourth multiplexer is coupled to receive a round con-

stant for input to the ALU;

each of the DSP slices includes the fourth multiplexer

coupled to receive the product input fed back to provide

an accumulator function; and

the fourth multiplexer is dynamically selectable to provide

either the round constant or the product input feedback.

#* #* #* #* #*

